

2.4m Space Telescopes

Hardware Summary

September 4, 2012

Hardware Summary

- Available Flight Hardware
 - > Two, 2.4m, two-mirror telescopes
 - One completed with full thermal hardware
 - > Electronics & Actuators have been harvested but can be rebuilt to existing drawings
 - > Two outer barrel assemblies
 - > One fully completed with thermal blankets and butterfly doors
 - > One hardware radiator/electronics bays
 - > Aluminum structures for radiator and electronic attachment
 - > Acted as a "spacer" between the spacecraft and the outer barrel assembly
- All ground support equipment for alignment, integration, and test
- Miscellaneous parts for a third system

Robust traceability has been retained for all flight hardware

Hardware

Outer Barrel
Assembly
(OBA)

2 Assemblies Available

Telescope Subsystem (TSS)

2 Assemblies Available

Payload Radiator Subsystem (PLRSS)

1 Assembly Available

Forward Optics Assembly (FOA) Configuration

2.4m Space Telescope Form

Optical Form: 2 Mirror, f/8

Aperture: 2.37m

Unvignetted Field of View: ~ 1.8^o Dia.

Wavefront Quality: <60 nm rms

Secondary Mirror Assembly Control –

6 DOF plus fine focus

• 6 DOF Actuators are at the base of the secondary struts

Focus actuator is behind the SMA

• Mass: 840kg

Back Focus: 1.2m behind PM Vertex

Outer Barrel Assembly

- Thermal Protective Enclosure including Two Actuated Thermal Butterfly Doors
- Composite Structure
- Full MLI blanket set also completed
- Mass: 280kg (without blankets)
- Mounting: Requires Interim Structure connected to Spacecraft Interface

System Obstruction

Mirror Quality and Coating

Primary Mirror (~40kg/m²)

Clear Aperture: 2.37m OD, 0.7m ID

Surface Quality: 12nm RMS

Form: Concave, F/1.2

Mirror Coating: Protected Silver

2 Dimensional Average PSD

Secondary Mirror

Clear Aperture: 0.53m OD, 0.02m ID Form: Convex

Surface Quality: 16nm rms Mirror Coating: Protected Silver

2002/08/21 11:44:27

Telescope Thermal Configuration

- Cold biased design Outer Barrel Assembly (OBA) serves as a passively cooled radiative enclosure to attenuate environment changes.
- Heaters control telescope: Aft Metering Structure (AMS), Forward Metering Structure (FMS), Secondary Mirror Assembly (SMA), Secondary Mirror Support Tubes (SMST)
 - Minimize radial and diametrical gradients near PMA
 - Independent prime, redundant, and survival heaters
 - Control telemetry for each heater zone
 - Prime & redundant for computer-based control
 - Autonomous hybrid heater controllers (HHC) for survival
 - OBA heater control located on door mechanism only
- MLI on FMS, SMA, OBA OD, SMST surfaces away from PM

Heater Zones by Region (Prime Side Only)

Heater Location	# of Zones	Capacity (Watts)
AMS	24	102
FMS	21	100
SMST	12	106
SMA	5	25

ITT Exelis State of the Art Material Technology Utilized to Provide Stable Telescope

Hybrid Laminates with low CTE, low CME, and high modulus (patented)

> 0 CTE (0.0 ± 0.1 μin/in°F) in all inplane directions

Cyanate Siloxane Resin with low moisture uptake (ITT/Hexcel development)

Hygro strain < 15 μin/in

Invar Fittings where required for stability

- > CTE: $< 0.4 \mu in/in$ °F
- > Temporal Stability (Invar growth):
 - $< 2 \pm 1 \mu in/in/yr$

Thermal Operating Considerations

- Telescope system was designed to operate around 293K (Room Temperature)
 - Does not require requalification for warm launch
- Various material considerations influence using the system at colder temperatures
 - Mirror Materials
 - Corning ULE™ is optimized for room temperature applications
 - ULE™ has been tested at 20K with degraded CTE characteristics
 - Structures
 - Laminate also optimized for room temperature use
 - CTE characteristics degrade slowly so some level of off-nominal conditions would be acceptable
 - Bonding Materials
 - GE RTV-566 used to attach mirrors to mounts would need qualification at offnominal temperatures
 - Mechanisms
 - Precision mechanisms would be a concern

Low Risk Minor Mat'l Testing		Minor Risk Refigure Mirrors/Qual Composites		<u>Major Rework</u> Major redesign of			
& Adhesives/ system Modify some mechanisms						n	
300	275	250	225	200	150	\rightarrow	
Operating Temperature (K)							

Summary

- Telescope system designed for room temperature operation
 - Off optimal thermal configuration is possible with some level of analysis and retest
 - We do not recommend operating temperatures below 200K due to numerous material, electronic, and optical considerations
- Some minor rework on the telescope is very low risk
 - Telescopes were designed to be taken apart and refurbished
 - Ion figuring and recoating would be considered very low risk for example
- Instrument section is the most doubtful of the configuration
 - Aluminum and heavy
 - Designed for a specific instrument accommodation
 - Not a cost driver to replace with a better form factor
- Outer Barrel Assembly is probably shorter than desired for NASA mission
 - Extension and repositioning is low cost and low risk
- Point of Contact

Dr. Jennifer Dooley – JPL

Jennifer.A.Dooley@jpl.nasa.gov

